Math 221: LINEAR ALGEBRA

Chapter 8. Orthogonality
§8-4. QR Factorization

Le Chen ${ }^{1}$
Emory University, 2021 Spring

(last updated on $01 / 25 / 2021$)

QR Factorization

Algorithm for the QR Factorization

QR Factorization

Algorithm for the QR Factorization

The QR Factorization

The QR Factorization

Definition

Let A be a real $\mathrm{m} \times \mathrm{n}$ matrix. Then a QR factorization of A can be written as

$$
\mathrm{A}=\mathrm{QR}
$$

where Q is an orthogonal matrix and R is an upper (or right) triangular matrix.

Theorem

Let A be a real $\mathrm{m} \times \mathrm{n}$ matrix with linearly independent columns. Then A can be written

$$
\mathrm{A}=\mathrm{QR}
$$

with Q orthogonal and R upper triangular with positive entries on the main diagonal.

Theorem

Let A be a real $\mathrm{m} \times \mathrm{n}$ matrix with linearly independent columns. Then A can be written

$$
\mathrm{A}=\mathrm{QR}
$$

with Q orthogonal and R upper triangular with positive entries on the main diagonal.

Proof.

Using columns of A to carry out the Gram-Schmidt algorithm to find an orthonormal basis for $\operatorname{im}(\mathrm{A})$ or $\operatorname{col}(\mathrm{A}) \subseteq \mathbb{R}^{\mathrm{m}}-$ columns of Q_{1}. One may further extend this basis to an orthonormal basis for the whole space $\mathbb{R}^{m}-$ columns of $\mathrm{Q}=\left[\mathrm{Q}_{1}, \mathrm{Q}_{2}\right]$.

The Gram-Schmidt algorithm guarantees that the ith column of A is linear combinations of all j th columns of Q with $j=1, \cdots, i$, which gives the upper triangular structure of R.

Remark

$$
\mathrm{A}=\mathrm{QR}=\left[\mathrm{Q}_{1}, \mathrm{Q}_{2}\right]\left[\begin{array}{c}
\mathrm{R}_{1} \\
\mathrm{O}
\end{array}\right]=\mathrm{Q}_{1} \mathrm{R}_{1}+\mathrm{Q}_{2} \mathrm{O}=\mathrm{Q}_{1} \mathrm{R}_{1} .
$$

Both QR and $\mathrm{Q}_{1} \mathrm{R}_{1}$ are called QR decompositions of A . The textbook refers $\mathrm{Q}_{1} \mathrm{R}_{1}$.

Remark

Q is orthogonal matrix, namely, $\mathrm{QQ}^{\mathrm{T}}=\mathrm{Q}^{\mathrm{T}} \mathrm{Q}=\mathrm{I}_{\mathrm{m}}$.
However, Q_{1} is not orthogonal matrix (not a square matrix). But We have $\mathrm{Q}_{1}^{\mathrm{T}} \mathrm{Q}_{1}=\mathrm{I}_{\mathrm{n}}$ and $\mathrm{Q}_{1} \mathrm{Q}_{1}^{\mathrm{T}} \neq \mathrm{I}_{\mathrm{m}}$ (in general).

QR Factorization

Algorithm for the QR Factorization

Algorithm for QR Factorization

Algorithm for QR Factorization

```
Algorithm 2: QR Factorization Algorithm
Input : Independent columns of \(\mathrm{A}:\left\{\overrightarrow{\mathrm{c}}_{1}, \overrightarrow{\mathrm{c}}_{2}, \ldots, \overrightarrow{\mathrm{c}}_{\mathrm{n}}\right\} \in \operatorname{col}(\mathrm{A}) \subseteq \mathbb{R}^{\mathrm{m}}\)
for \(\mathrm{j} \leftarrow 1\) to n do
\(\overrightarrow{\mathrm{f}}_{\mathrm{j}} \leftarrow \overrightarrow{\mathrm{c}}_{\mathrm{j}}-\frac{\overrightarrow{\mathrm{c}}_{j} \cdot \overrightarrow{\mathrm{f}}_{1}}{\left\|\overrightarrow{\mathrm{f}}_{1}\right\|^{2}} \overrightarrow{\mathrm{f}}_{\mathrm{i}}-\frac{\overrightarrow{\mathrm{c}}_{\mathrm{j}} \cdot \overrightarrow{\mathrm{f}}_{2}}{\left\|\overrightarrow{\mathrm{f}}_{2}\right\|^{2}} \overrightarrow{\mathrm{f}}_{2}-\cdots-\frac{\overrightarrow{\mathrm{c}}_{\mathrm{j}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{j}-1}}{\left\|\overrightarrow{\mathrm{f}}_{\mathrm{j}-1}\right\|^{2}} \overrightarrow{\mathrm{f}}_{\mathrm{j}-1}\).
\(\vec{q}_{j} \leftarrow \frac{\overrightarrow{\mathrm{f}}_{j}}{\left\|\overrightarrow{\mathrm{f}}_{j}\right\|}\)
    for \(\mathrm{i} \leftarrow 1\) to j do
    I
                                    \(\mathrm{r}_{\mathrm{ij}} \leftarrow \overrightarrow{\mathrm{q}}_{\mathrm{i}} \cdot \vec{c}_{\mathrm{j}}\)
    end
end
Output: \(\mathrm{Q}=\left[\overrightarrow{\mathrm{q}}_{1}, \cdots, \overrightarrow{\mathrm{q}}_{\mathrm{n}}\right]\) and \(\mathrm{R}=\left[\mathrm{r}_{\mathrm{ij}}\right]\)
```


Problem

Let

$$
\mathrm{A}=\left[\begin{array}{ll}
4 & 1 \\
2 & 3 \\
0 & 1
\end{array}\right]
$$

Find the QR factorization of A.

Problem

Let

$$
A=\left[\begin{array}{ll}
4 & 1 \\
2 & 3 \\
0 & 1
\end{array}\right]
$$

Find the QR factorization of A.

Solution
Set $\mathrm{A}=\left[\overrightarrow{\mathrm{c}}_{1}, \overrightarrow{\mathrm{c}}_{2}\right]$. When $\mathrm{j}=1$,

$$
\overrightarrow{\mathrm{f}}_{1}=\overrightarrow{\mathrm{c}}_{1}=\left[\begin{array}{l}
4 \\
2 \\
0
\end{array}\right] \quad \text { and } \quad \overrightarrow{\mathrm{q}}_{1}=\frac{\overrightarrow{\mathrm{f}}_{1}}{\left\|\overrightarrow{\mathrm{f}}_{1}\right\|}=\left[\begin{array}{c}
\frac{4}{\sqrt{20}} \\
\frac{2}{\sqrt{20}} \\
0
\end{array}\right] .
$$

For $\mathrm{i}=1$,

$$
\mathrm{r}_{11}=\overrightarrow{\mathrm{q}}_{1} \cdot \overrightarrow{\mathrm{c}}_{1}=\frac{\overrightarrow{\mathrm{f}}_{1}}{\left\|\overrightarrow{\mathrm{f}}_{1}\right\|} \cdot \overrightarrow{\mathrm{f}}_{1}=\left\|\overrightarrow{\mathrm{f}}_{1}\right\|=\sqrt{20}
$$

Solution (continued)
When $\mathrm{j}=2$,
$\overrightarrow{\mathrm{f}}_{2}=\overrightarrow{\mathrm{c}}_{2}-\frac{\overrightarrow{\mathrm{c}}_{2} \cdot \overrightarrow{\mathrm{f}}_{1}}{\left\|\overrightarrow{\mathrm{f}}_{1}\right\|^{2}}=\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]-\frac{10}{20}\left[\begin{array}{l}4 \\ 2 \\ 0\end{array}\right]=\left[\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right] \quad$ and $\quad \overrightarrow{\mathrm{q}}_{2}=\frac{\overrightarrow{\mathrm{f}}_{2}}{\left\|\overrightarrow{\mathrm{f}}_{2}\right\|}=\left[\begin{array}{c}-\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}}\end{array}\right]$
For $\mathrm{i}=1$,

$$
\mathrm{r}_{12}=\overrightarrow{\mathrm{q}}_{1} \cdot \overrightarrow{\mathrm{c}}_{2}=\left[\begin{array}{c}
\frac{4}{\sqrt{20}} \\
\frac{2}{\sqrt{20}} \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]=\sqrt{5} .
$$

and for $\mathrm{i}=2$,

$$
\mathrm{r}_{22}=\overrightarrow{\mathrm{q}}_{2} \cdot \overrightarrow{\mathrm{c}}_{2}=\frac{\overrightarrow{\mathrm{f}}_{2}}{\left\|\overrightarrow{\mathrm{f}}_{2}\right\|} \cdot\left(\overrightarrow{\mathrm{f}}_{2}+\frac{\overrightarrow{\mathrm{c}}_{2} \cdot \overrightarrow{\mathrm{f}}_{1}}{\left\|\overrightarrow{\mathrm{f}}_{1}\right\|^{2}}\right)=\frac{\overrightarrow{\mathrm{f}}_{2}}{\left\|\overrightarrow{\mathrm{f}}_{2}\right\|} \cdot \overrightarrow{\mathrm{f}}_{2}=\left\|\overrightarrow{\mathrm{f}}_{2}\right\|=\sqrt{6} .
$$

Solution (continued)
Therefore,

$$
\begin{gathered}
\mathrm{A}=\mathrm{QR}=\left[\overrightarrow{\mathrm{q}}_{1}, \overrightarrow{\mathrm{q}}_{2}\right]\left[\begin{array}{cc}
\mathrm{r}_{11} & \mathrm{r}_{12} \\
0 & \mathrm{r}_{22}
\end{array}\right] \\
\mathbb{1} \\
{\left[\begin{array}{ll}
4 & 1 \\
2 & 3 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
\frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{6}} \\
0 & \frac{1}{\sqrt{6}}
\end{array}\right]\left[\begin{array}{cc}
\sqrt{20} & \sqrt{5} \\
0 & \sqrt{6}
\end{array}\right]}
\end{gathered}
$$

